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Oram, M. W., M. C. Wiener, R. Lestienne, and B. J. Richmond. 1992a,b; Heller et al. 1995; McClurkin et al. 1991a—c; Rich-
Stochastic nature of precisely timed spike patterns in visual systgAbnd and Optican 1990; Richmond et al. 1987). It has been
neuronal responsesd. Neurophysiol81: 3021-3033, 1999. It is notgﬁoposed that precisely<L ms) timed spike patterns carry

clear how information related to cognitive or psychological process . . .
is carried by or represented in the responses of single neurons. grmatlon unavailable from spike count and play a central

provocative proposal is that precisely timed spike patterns play a rb€ In important psychological processes such as linking or
in carrying such information. This would require that these spikeinding of parts of objects falling on different retinal receptors
patterns have the potential for carrying information that would not {&beles 1991; Engel et al. 1992; Singer and Gray 1995; von
available from other measures such as spike count or latency. \fer Malsburg 1995; von der Malsburg and Schneider 1986).
examined exactly timed (1-ms precision) triplets and quadruplets §gyeral experiments have suggested that an independent pro-

spikes in the stimulus-elicited responses of lateral geniculate nucl ; ; ; ;
(LGN) and primary visual cortex (V1) neurons of the awake fixatin%?":!:S might exist that controls the times of some of the spikes

rhesus monkey. Large numbers of these precisely timed spike patt Eh'n responses of neurons in fror_1ta| and visual COI‘tIC(.BS anq
were found. Information theoretical analysis showed that the precis&ijplamic areas (Abeles et al. 1993; Aertsen et al. 1989; Lesti-

timed spike patterns carried only information already available froBN€ and Strehler 1987; Lestienne and Tuckwell 1998; Prut et
spike count, suggesting that the number of precisely timed spigb 1998; Riehle et al. 1997). Such an independent process
patterns was related to firing rate. We therefore examined statisticaluld encode the information needed for these psychological
models relating precisely timed spike patterns to response strengitocesses.

Previous statistical models use observed properties of neuronal reprecisely timed spike patterns can carry information beyond

sponses such as the peristimulus time histogram, interspike interyght carried by spike count only if the precise spike patterns are
and/or spike count distributions to constrain the parameters of 8¢ trolled rather than occurring by chance. We examined

model. We examined a new stochastic model, which unlike prev'opésponses of single neurons from the lateral geniculate nucleus

models included all three of these constraints and unlike previoys N d ori : | " v1) for th | f
models predicted the numbers and types of observed precisely ti ) and primary visual cortex (V1) for three classes o

spike patterns. This shows that the precise temporal structuresPbgcisely timed patterns of spikes previously studied in frontal
stimulus-elicited responses in LGN and V1 can occur by chance. \@8d primary visual cortices and thalamic areas of rat, cat, and
show that any deviation of the spike count distribution, no matter haWwonkey (Abeles et al. 1993; Lestienne and Strehler 1987,
small, from a Poisson distribution necessarily changes the numberL@fstienne and Tuckwell 1998; Prut et al. 1998). The precisely
precisely timed spike patterns expected in neural responses. Oveiafled patterns were found to carry some stimulus-related in-
the results indicate that the fine temporal structure of responses ¢gfmation, but the same information was available from spike
only be interpreted once all the coarse temporal statistics of neusglynt. This suggested that the precisely timed patterns were
responses have been taken into account. predictable from a model using the spike count and slow
variation in firing rate, leading us to search for such models.
The variation in the number and timing of spikes occurring
INTRODUCTION across trials is large, giving ample possibility for different

To relate neuronal responses to higher functions such Signuli to elicit different numbers and types of spike patterns.
perception and memory it is critical to know what aspects gf '€ 1arge number of possible spike patterns makes it a complex
ﬁ@_tlstmal problem to determine whether the spikes occurred

neuronal responses can carry information. Because extrace selv when thev did by ch hether it A
larly recorded neuronal responses can be regarded as a seri LegiSely when Ihey did by chance or whether it IS necessary to
; ; : raﬁ)stulate some process controlling the spike times. Statistical

characteristics as well as firing rate of spike trains vary in§00€ls with simple response measures, e.g., spike count, peri-
systematic way across experimental conditions. It has begglnums time histograms (PSTHs), and interspike intervals
i

shown that information is coded in the temporal characteristigs'S): have been developed to reduce the complexity of this

of responses when the times of the spikes are represente ;ggli?]i'n-{:ri? '?e]%dp%?a?rstrﬂii?rég ?ﬁ;?rgﬂeb?igggg:é %';/d
relatively low temporal precision~<20 ms) (Eskandar et al. .
y P P A ) ( chance (Abeles 1991; Abeles and Gerstein 1988; Abeles et al.
—— P—— , 93; Aertsen et al. 1989; Dayhoff and Gerstein 1983a,b;
The costs of publication of this article were defrayed in part by the payme&? V! i . ot
of page charges. The article must therefore be hereby maskhaftisemerit  -€stienne and Strehler 1987; Lestienne and Tuckwell 1998;
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. =~ Vaadia et al. 1995). The simplest of these, the uniform Poisson
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model, assumes a Poisson process with a uniform firing re|pENTIFICATION OF REPEATING TRIPLETS
Another class of model shuffles the ISIs. These shuffled |
9 14

models directly examine the tendency for interval lenigtio 9 14

follow interval lengtha. Finally, time-varying or nonhomog-

enous Poisson process (NHPP) models are based on { I 1

changes of the observed stimulus-elicited firing rate over tin 1 111 |

(Abeles and Gerstein 1988; Aertsen et al. 1989; Lestienne ¢ "H—H—'I'_H

Strehler 1987; Lestienne and Tuckwell 1998; Victor and Pu A

pura 1996). None of these models matched the precise tem f f f

ral structures observed in the neural data in past studies nor 18

we show subsequently, do they match the data from our ¢

periments in the LGN and V1. 18
Previous stochastic models, which assume that the sp

counts follow a Poisson distribution (Abeles and Gerste

1988; Abeles et al. 1993; Aertsen et al. 1989; Lestienne a.... 18 18

Strehler 1987; Lestienne and Tuckwell 1998), predicted feweric. 1. Detection of repeating triplets. Pairs of interspike intervals (ISls)

precisely timed spike patterns than seen in our V1 and LGK examined to see if they repeated within individual spike trains (horizontal

data. A new stochastic model, which extends an earlier mo ﬁ)'tgggtfsrs(?égigﬁﬁtgmg tti%)éit)stf;eg'riﬁrgﬁfg\;vghe identified by red arrows

(NHPP) only in that it replaced the assumed Poisson distribu-

tion with the observed distribution of Spike counts, predlcteﬂggg) occurs when any spike triplet with intervalandb (0 < a,b =

almost exactly the observed numbers and types of precisgl/ms) appears at least twice in a single stimulus-elicited spike train

timed patterns. We show that any deviation, no matter hdigee Fig. 1). Note that “extra” spikes could appear both within triplets

small, from a Poisson distribution of spike counts necessarigd between the repeats of triplets. Each spike can participate in any

induces changes in the numbers and types of spike patterngumber of repeating triplets, making it possible for the number of

and between neuronal responses of both single and, by sin] feeating triplets to be greater than the number of spikes. To inves-

extension, multiple neurons. The results demonstrate that {98t the general applicability of models, we also identified the

precise temporal patterns observed in our data can arise' ber of each of the 15,625 possible replicating quadruplets with

. intérvalsa, b, andc (0 < a, b, c = 25 ms) provided that the quadruplet
chance. The match between the observed and predicted t € appeared at least twice in a single stimulus-elicited spike train.

poral patterns makes this model a potentially valuable tool fgje ais0 counted the number of triplets across responses regardless of
understanding the mechanisms underlying the temporal pr@g@rether the triplet repeated within an individual trial. To enable the

erties of neuronal responses. use of standard parametric statistical tests, the number of patterns
found was transformed with natural logarithms to remove the strong
METHODS dependency of the variance on the mean and establish homogeneity of

variance (Snedecor and Cochran 1980).
Using standard techniques, we recorded activity from LGN and V1

neurons from a rhesus monkey performing a fixation ta_sk. Spike d%ﬁike count-matched model
from single neurons were collected with 1-ms resolution. Up to 6
different images were used as stimuli for LGN recordings: bars at fourThe model we propose generates random spike times while
orientations and dots at four sizes, each at up to eight different contnasgserving both the spike count distribution assessed over a long
levels. Up to 274 stimuli were used when recording V1 neurons: bg#00 ms) time period and the observed stimulus-elicited firing rate
at 8 orientations at 5 contrast levels, gratings at 8 orientations angrfile for each stimulus. The spike count distribution is preserved
spatial frequencies at up to 5 contrast levels, Walsh patterns at ufbyostepping through the experimental data trial by trial and forcing
5 contrasts, and 32 digitized photographs. each simulated trial to have the same spike count as the corre-
Each stimulus was presented for 300 ms centered on the recgpending experimental trial. We refer to this model as the spike
tive field. The stimuli covered the excitatory receptive field andount-matched model because of the forced matching of the spike
extended into the near surround. Reward was delivered after eveount distribution.
one to four stimulus presentations if the monkey maintained fixa- The responses from each cell to each stimulus are used to generate
tion within 0.5°. LGN parvocellular neurons were recorded witla spike density function by convolution of the PSTH with a Gaussian
receptive field centers varying between 3 and 20° eccentricities(ifig. 2,top). The results used a Gaussiancof= 5 ms (Richmond et
the lower contralateral hemifield. Striate cortical neurons in the. 1987). Results with Gaussians @f= 2 or 10 ms were indistin-
calcerine sulcus had receptive fields between 5 and 10° from ttp@ishable from the results with = 5 ms. Smoothing the stimulus-
fovea in the upper contralateral hemifield. The animal procedurelicited spike trains with Gaussians of = 20 ms reduced the
followed USPHS guidelines and were approved by the NIMigredicted number of repeating triplets.

Animal Care and Use Committee. We used a standard method to generate random numbers (spike
times) with a known probability distribution (spike density function)
Data analysis (Press et al. 1992). The spike times are generated randomly by taking

uniform random numbers in the interval (0-1) and applying the
Analysis was performed on the period200 to +200 ms peri- inverse of the cumulative probability distribution (Fig. Botton).
stimulus onset, with spikes times measured with 1-ms precision. TRipecifically, the spike density function is transformed into a cumula-
interval was chosen because it provided equal pre- and poststimuiue spike density function (CSDF) for each stimulus at each time
onset sample periods while capturing the majority of the availab®int t
information in the responses. We identified and counted all triplets
and quadruplets with intervals 25 ms in each response. A repli- CSDFt) =

t
> SDF(
cating triplet (Lestienne and Strehler 1987; Lestienne and Tuckwell i=1 0
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0.25.- by the refractory period (Berry and Meister 1998; Berry et al. 1997).
We adjusted the spike count-matched model to account for this effect.
g An overall frequency ISI histogram for each cell was compared with
'5_0-20' the frequency histogram of the simulated spike trains when no cor-
n rection for refractory period was used. The probability of allowing a
S 0.15] 1-ms ISI was then set to be the ratio of the number of 1-ms intervals
= in the data to the number in simulated dapg (Then a new set of
= 0.10 simulated spike trains was generated allowing spikes to be 1 ms apart
a5 only if a uniform random number (0-1) fell belogy and a new ISl
g histogram was generated. Then the same procedure was used to
(<] O.OS-AM/\) correct the probability for the 2-ms ISI. An example of the ISls
o obtained from the spike count-matched model and the corresponding
0.00 ISI from a striate neuron are shown in Fig. 3. After correcting for the
’ ' ' j 1- and 2-ms ISls the simulated data for both LGN and V1 neurons
had ISI frequency histograms that were indistinguishable from the
1.0- neuronal data (nonsignificant deviations, Kolmogorov-Smirnov test,
>
= P > 0.05).
% 0.8- v
e Information measures
2 0.6/
o To assess the potential role of precisely timed spike patterns for
g 0.4 \/ cognitive or psychological processing we used an information theo-
= retical approach. Transmitted information is a statistical measure
o quantifying how well a set of inputs (here visual stimuli) can be
g 0.2 distinguished from each other using the corresponding outputs (here
5 the responses of the neurons). The amount of information calculated
O 0.0 kN to be in a neuron’s response depends on the code used to interpret the
: ' " i ' response (e.g., spike count). We measured the information carried
-200 -100 0 100 200 when the number of spikes (spike count) in a trial was used as the
Post-Stimulus Time (ms) response code, when the number of precisely timed spike patterns was

) ) ) ) used as the response code, and when the two measures together were

FIG. 2. Spike count-matched mod'e’bp spike density function calculate_d used as the response code. If, as has been suggested (Abeles 1991;
fr?fm tt.he rf.SpolnseBS tc:f 1 lateral g't‘?n'cuﬁthe nugLeuZ (ng)f”eutfon ]fo a St'h”%engel et al. 1992; Lestienne and Strehler 1987; von der Malsburg and
effective stimulusBottom summation of the spike density function from the : . : . : :
o ey e e ke o cier e o oo ORI 1955 e imed spkes ol specel o 1,
malization so that the total probability 1 gives the cumulative spike prob- g, then: . Yy y _
ability function. Cumulative spike probability function allows random numfrom considering the spike count alone. We were therefore interested
bers drawn from a uniform distribution to be transformed into the distributioit Whether there was stimulus-related information carried by the
of spike arrival times given by the spike density functidap(sectioh. To triplet code and whether the dual code of precisely timed spike
generate a trial with, say, 3 spikes, 3 uniformly distributed random numbgsatterns and spike count carried more information than that carried by
between 0 and 1 are drawn. These random numbers are then transformed gfifike count alone.

the cumulative spike probability function to obtain the times at which the petails of information theory can be found elsewhere (Cover and
spikes will occur in the simulated spike train. The arrows show an example of

the transformation of 3 evenly spaced random numbeesis) into the spike

times (-axis) appropriate for the spike density function shown. Spikes in the ® STRIATE
resulting train are not evenly spaced. 1400 O MODEL
1200 {
Normalization by the value of the CSDF at the end of the sample
period ¢ = T) gives the cumulative spike probability function 1000-
_ CSDFO) Z oo

CSPF() = CSDF() 8
(Fig. 2,botton). The CSPF gives the probability with which any given 6001
spike in a train will have occurred withinms of stimulus onset. The
time bin (width 8t, here 1 ms) in which a spike occutg,;, in a 4004
simulated train is determined from a uniform random distribution
Rio.1j such that,, . satisfiesCSPFK) = (R 1) < CSPFk + 1), the 200+
time of thekth bin being betweekst and k + 1)8t (arrows in Fig.
2, botton). As with the NHPP model, only one spike is allowed in 0
each time bin; when a spike was assigned to an already occupied
bin, a new random number was drawn and the spike was reas- INTER-SPIKE-INTERVAL (ms)
signed. FIG. 3. Matching ISIs of the spike count-matched model and the neuronal

data. ISI histograms from a primary visual cortical (V1) neureh &nd the
Correction of ISIs corresponding spike count-matched modglgre shown. The ISI distributions
of all neurons obtained from the spike count-matched model were statistically
The number and type of patterns seen in modeled responsesidgtinguishable (Kolmogorov-Smirnov tes®, > 0.05) from those of the
known to depend on the ISI distribution, which in turn is influencedorresponding neurons.
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Thomas 1991; Shannon 1948). In brief, we asked how well thiifferent responses regardless of how many times the pattern
neuronal responses could, in principle, tell us which stimulus eIiciteépeated within a single response. The data were collected

a response. Information is defined as from 32 LGN neurons and 19 supragranular complex cells in
o(slr) V1 of an awake fixating monkey.
lsp = E E p(r)p(sir) |092( © )] 1) We begin by examining the number of precisely timed
s R P repeating triplets independent of stimulus and the particular

where | s is the information transmitted about the set of inpuPattern type. At least 60% of the spikes in the excitatory
stimuli S The outer sum ranges over all the stinsliThe inner sum responses of both LGN and V1 (Fig. 4) neurons are associated
ranges over the set of all observed respori&esor the terms of the with repeating triplets. Previous work (Abeles and Gerstein
inner productp(r) is the probability of observing responsédepen- 1988) suggests there will be a strong, nonlinear relationship
dent of the input stimulug(slr) is the probability of responsebeing  petween the mean number of repeating triplets within individ-

the inp.u.t stimu!us having observed responseée., the ponditional ual responses and the spike count, as we find in both LGN and
probability of stimuluss being present based on observing respense ;1 neuronal responses (Fig. 5).

in a particular trial.p(s) is the a priori probability of the stimulus
which is determined by the frequency with which the stimulus was
presented in the experiment. Information carried by precisely timed spike patterns
Although p(s) is controlled by the experimentep(r) and p(slr)

must be estimated from the neuronal data. Because of limited sampld he strong dependency of the number of repeating triplets
size p(r) and especiallyp(r) are subject to misestimation (Carltonon the number of spikes within a response does not, of course,
1969; Kjaer et al. 1994; Miller 1955; Optican and Richmond 198 fireclude the possibility that the precisely timed patterns carry
Panzeri and Treves 1996). Several methods have been developegfi@rmation that is unavailable from spike count because the
correct for limited sample size and calculate an accurate estimatengfmber of precisely timed patterns could also vary with stim-
::(ﬁ%é?égié gééire:teiioﬁt?tt zlarig%%aweﬁgggihtgi%t r}ggtgg z.riﬂlfls. condition. We therefore directly measured the information
et al. (1994) ’ : ' %‘?_alrrled by 1) the spike count?2) th.e number of repeating

' ' triplets, and3) the dual code of spike count and number of
repeating triplets together.
RESULTS To calculate the stimulus-related informatioBg( 1) we

Number of precisely timed spike patterns depends on re_quire a measure of the precisely t_imed_spike patterns in each
response strength trial. We used the number of spikes in each trial as one

response measure and the number of repeating triplets in each

We searched spike trains for three classes of precisely tinteid! as another response measure. The information carried by
(1-ms precision) patterns that have been studied by othepske count alone was on average.5 times the amount of
(Abeles 1991; Lestienne and Strehler 1987; Lestienne amdformation carried by the number of precisely timed repeating
Tuckwell 1998; Prut et al. 1998). The classes of preciselsiplets [Fig. 6, left and middle bars, LGN: 0.3& 0.047
timed spike patterns we examined wdiethe triplets and2) (mean= SE) vs. 0.14+ 0.03; V1: 0.41*+ 0.023 vs. 0.15+
the quadruplets that repeat within single neuronal respon$€e813]. Inclusion of the number of repeating triplets with spike
(see Fig. 1) an®) the total number of triplets found acrosscount to form a dual code with two numbers (spike count and

FiGc. 4. Rastergram displays of individual responses of cells.
Left rastergramall spikes (black and red vertical ticks) in each
trial (horizontal trace)Middle rastergram only those spikes
associated with repeating triplets (red tickR)ght rastergram
same trials after removal of the spikes from repeating triplets.
Vertical bar in each indicates stimulus onsedp responses of
an LGN neuron to a bright square covering the excitatory
receptive field. Almost every spike associated with the excita-
tory response is also associated with a repeating triplet, yet very
few repeating triplets are present before response oBsét.
tom responses of a V1 neuron. Note the high variability in the
number of spikes associated with repeating triplets for different
trials, ranging from none to all spikes in a trial.

Ry Spikes in Spikes NOT
All Spikes Repeating in Repeating
Triplets Triplets
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LGN patterns with the spike count and slow variation in firing rate.
225, Table 1 shows the relevant properties of the models we used to
o 200 investigate the expected numbers of repeating triplets expected
@ 175 by chance.
Q0. The uniform Poisson and NHPP models both assume that the
= 125 spike counts follow a Poisson distribution. A Poisson distribu-

1 tion of spike count has a variance numerically equal to the
£ 1001 mean. In our data the variance of the LGN and striate neuronal
T© 75 responses was greater than the mean (Fig. 7). On average the
g 504 Fano factor (variance/mean) was 144).03 for the responses
&-’ o5 of the LGN neurons and 2.96¢ 0.03 for the V1 neurons,

] indicating the spike count distributions were not Poisson (Sne-

0 ’ ' - ' T T ] decor and Cochran 1980). These values are similar to those

4 10 15 20 25 30 35 40 reported for the spike count distribution from recordings in

225 PRIMARY VISUAL CORTEX LGN, V1, TE, MT, parietal, and frontal areas (Bradley. et al.
1987; Buracas et al. 1998; Gershon et al. 1998; Levine and
a 2004 Troy 1986; Mechler et al. 1998; Reich et al. 1997; Tolhurst et
%_175- al. 1983; Victor and Purpura 1996; Vogels et al. 1989).
= 150
|;,125- 0.5
_% 100 _ LGN
] e @ 0.4
o ] 0
o 25 = 0.3
0 + : . . . 2
4 10 15 20 25 30 T 0.2
Response (Spikes) g
Fic. 5. Number of repeating triplets depends on spike count. Number of 'E 0.1

repeating triplets (meart SE) in neuronal responses is plotted as a function

of the number of spikes within the responses. Note the nonlinear relationship
between mean number of repeating triplets and the resp®ogelL GN data. 0.0
Bottom V1 data.

number of repeating triplets) associated with each trial pro-
vided no additional information about which stimulus was
present beyond that available from spike count (left and right
histogram bars of Fig. 6, LGN: 0.36 0.047 vs. 0.36+ 0.047;

V1: 0.41 = 0.023 vs. 0.41+ 0.022), indicating that the
stimulus-related information available from the number of
repeating triplets is completely redundant with the information
from spike count for both LGN and V1 neurons. We present
only the results from the analysis of repeating triplets but note
that qualitatively the same results were obtained with repeating
qguadruplets; the information carried by repeating quadruplets
is much less than and completely redundant with the informa- oli
tion carried by spike count. All

©
s

©
»

o
—

Information (Bits)

Spikes Number of All Spikes &
Repeating Repeating
Triplets Triplets

Models predicting repeating spike patterns
FIG. 6. Information measures from the number of repeating triplets are
The redundancy of the information from the number dfiherent in the total spike count. Three measures of the mean information are
repeating triplets with the information from spike count squ-ho""”- Information from total spike count (All Spikes) is higher than the
. - . - _Anformation from the number of repeating triplets (Number of Repeating
gests that the d'Str!bUt'on of th? m:'mbers of precisely tim Tiplets). If the presence of repeating triplets were independent of the first-
(1-ms accuracy) spike patterns is directly related to slow vagider statistics of the spike trains then the information from Spikagiplets
ations (>20-ms accuracy) in firing rate as characterized by theuld be the sum of the information from All Spikes and the information from
spike density function and spike count. To investigate whethég Nllllmb_ir of Rzpehaﬁng TEP'EtSf- T,hle inf(ggm_:ls\(tior_}f_rolm a;j_omt C%‘?‘f? contain-
. s : : H all spikes and the number of triplets pikesTriplets) i1s no different
th.e StImUIu.S-.e“CIteq repeating trlplets ?‘re predlctable from t m the information from the spike count (All Spikesjop LGN data,
stimulus-elicited spike count we examined models of the relaxova: effect of code Fioaz = 56.1, P < 0.0005.Bottom V1 data,

tionship of the numbers and types of precisely timed spilk@OVA: effect of codeF, 36 = 78.5,P < 0.0005.



3026 ORAM, WIENER, LESTIENNE, AND RICHMOND

TABLE 1. Comparison of models used to assess significance of triplets predicted by the spike count-matched model on the
precisely timed spike patterns observed number was statistically indistinguishable from
equality (the regression lines are hidden by the equality line).
Spike Count  To assess the accuracy of the NHPP model we calculated the
Model Process PSTH ISIs Distribution  r4tig of the number of repeating triplets from the model to that
observed in the neural data. For both LGN and V1 data sets the

Uniform Poisson  Uniform rate Poisson No No No (Poisson) : - -
process spike count-matched model predicted the numbers of repeating

Shuffled ISI Shuffle ISI trial by No Yes  Yes triplets more accurately than the NHPP model (FignSet3.

NHPP T.”'a' ) v \ No (Poi The spike count-matched model also accurately predicted the
'Qg’s‘gg'ggocess s o No(Poisson) ,mher of repeating quadruplets (not shown) within the re-

Spike count As NHPP, but trials ~ Yes ~ Yes Yes sponses of LGN (mtt_ercepvt: 0.005, slope= 1.12,R* = 0.94)

matched selected to have and V1 neurons (intercept —0.002, slope= 0.998,

particular spike R? = 0.95).

counts Finally, to investigate the possibility that particular patterns

Three models commonly used to examine the statistical significance'Gf the responses to individual stimuli may occur more fre-
precisely timed spike patterns are listed along with the new spike couftuently than expected by chance (Abeles 1991; Abeles et al.
matched model described here. A brief description of the process used1®93; Prut et al. 1998; Riehle et al. 1997; Vaadia et al. 1995)
hether o ot the. madel is constrained to. match he perisimuius trice & Xamined the numbers of each repeating triplet type found
histogram (PSTH), the interspike interval (ISI) distribution, and the spi th.e responses "’?”d Compared the results to the numbers
count distribution. Of these models, only the spike count-matched model ug€dicted by. the spike count-matched model. We cpunteq the
all 3 constraints, and only the spike count-matched model predicts the obseretmber of times each of the 625 types of repeating triplet
numbers and types of precisely timed spike patterns observed in LGN (lates@lcurred in the neuronal and simulated data for each stimulus.

geniculate nucleus) and primary visual neural responses. NHPP, nonhon}gfﬁure 10 shows a high ridge of repeating triplets with equa|
enous Poisson process.

Comparison of models with neuronal data 160 - LGN

Figure 8 shows the mean number of all types of repeating
triplets (intervalsa, b = 25 ms) found in recorded spike trains
from the LGN ¢op) and V1 potton) and the spike trains
simulated using the four different models (uniform Poisson,
shuffled ISI, NHPP, and spike count-matched models; see
INTRODUCTION) (Abeles 1991; Abeles and Gerstein 1988; Abe-
les et al. 1993; Aertsen et al. 1989; Dayhoff and Gerstein
1983a,b; Lestienne and Strehler 1987; Lestienne and Tuckwell
1998; Vaadia et al. 1995). The numerical differences between
the observed and predicted numbers of repeating triplets from
the uniform, shuffled 1SI, and NHPP models are small but
highly significant P << 0.0005). In contrast, the spike count-
matched model predicted numbers of repeating triplets that
were indistinguishable from those observed in both LGN and
V1 data P > 0.2 each comparison). The spike count-matched
model also predicted the number of triplets across responses
observed in the neural data. The spike count-matched model
differs in two ways from previous models in that we matched
both the spike count distribution and the influence of the
refractory period on the ISIs. The effect on the number of
repeating triplets of adjusting the spike count distribution from
Poisson (NHPP) to that observed was considerably larger than
the effect of adjusting the ISIs (9 times larger with the V1
data).

Previous reports have noted that the occurrence of precisely
timed spike patterns varies with stimulus (Abeles 1991; Abeles
et al. 1993; Engel et al. 1992; Prut et al. 1998; Riehle et al.
1997; Singer and Gray 1995; Vaadia et al. 1995). We also 0
examined the number of precisely timed spike patterns found
in the responses of LGN and V1 neurons to individual stimuli. MEAN (Spikes)

Each point in Fig. 9 shows the number of repeating triplets

measured (i the neuronal dete) and predicted (oy the splcEe T Resperees LN S s s Trmen deuse
Count-matChe.d model) in the responses to one StImUIus_ of uluspof each cell forpthe neural data. ‘?’he thick line represgnts equality
neuron. The figure shows the data from all neurons. Figur,9— 42 a property of Poisson distributions. Most points lie above the
shows that the regression line of the number of repeatiaguality line for both the LGNtop) and V1 data lfotton).

140 -

-

N

o
'

Y
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o
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Variance (Spikes?)
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LGN both the modeled and the neuronal data. Not surprisingly, very
similar distributions of triplet types were observed for the total
numbers of triplets across all responses.

o
o

Estimating significance of particular spike patterns

e
B

To estimate the statistical significance of the numbers of
repeating triplets found in the neuronal data, a Monte Carlo
approach was used. For each cell and each stimulus we gen-
erated 10,000 “runs” of the spike count-matched and NHPP
models, with each run containing the same number of trials as
in the neuronal data set. Figure 11 shows that the spike count-
matched model predicts larger numbers and greater variability
in the numbers of each repeating triplet type found per trial
than is predicted from the NHPP process. The number of each

of the 625 repeating pattern types was noted in each of the
0.6+ PRIMARY VISUAL CORTEX 10,000 simulations, giving the predicted distributions of the
numbers of each of the individual triplet types. The number of
a particular repeating triplet type that could be accepted as
occurring by chance was taken to be any number that fell
within the 95% confidence limits of the predicted distribution
of that repeating triplet type (Fig. 12). The spike count-
matched model predicted the number of triplets across re-
sponses in addition to the number of repeating triplets within
responses (not shown).

The estimation of significant deviations from the expected
numbers of individual precisely timed patterns both within and
between responses is prone to problems associated with mul-
tiple comparisons. Figure 13 illustrates this point for repeating

it
d

Repeating Triplets / Trial

°
n

Repeating Triplets / Trial

“Neural UniformShuffled NHPP _ Spike ) ;
D:ta Poisson ISl cgunt triplets. The large peak found in the responses of one cell to

Matched one stimulus indicates that this repeating triplet type (intervals
FIG. 8. Comparison of the number of repeating triplets found in neuron;:!ﬂG;l5 ms) occurred more frequently than any other (large peak

and modeled data. The mean number of repeating triplets per trial found in the Fig. 13, top graph). Individual runs of the _spike_ count-
spike trains from the neuronal and modeled data sets is shown on a logarithmiatched model also showed particular repeating triplet types

scale. Top repeating triplets from LGN neuronal and modeled responsegith the same h|gh frequency of occurrence (F|g Adttom

Modeled data sets contain 20 times more trials than the LGN data sets. P ;
hoc testing revealed that the spike count-matched model gave results that rephg' The peaks from the simulated data were found at a

statistically indistinguishable from the LGN dafa & 0.1). The other models variety of triplet types in different runs (e.g., 9,7, 16;15, 2;2,
predicted fewer repeating triplets than seen in the LGN date 0.01 each and 3;6). The large variability of the triplet types arising from
comparison). ANOVA: overall effect of source of triple, 1, = 13.8,P <  the spike count-matched model illustrates the danger of assum-
0.00005. Effect of cell:Fjz; 1,4 = 12,775.0,P < 0.00005. Interactions: ing that a single extreme peak in the neuronal data is signifi-

Fi24,2060640= 84.4,P < 0.00005.Bottom repeating triplets from V1 neu- . . P
ronal and modeled responses. Modeled data sets contain 20 times more tﬁggt' By accepting the peak in the neuronal data as S|gn|f|cant

than the V1 data sets. Post hoc testing revealed that the spike count-maté#@@ would be forced to assert that the large peaks in the
model gave results that were statistically indistinguishable from the V1 dagxample simulations, which we know arise from a stochastic
(P > 0.1). Other models predicted fewer repeating triplets than seen in the Ptocess, were also significant. Thus the parsimonious conclu-

data P < 0.01 each comparison). ANOVA: overall effect of source of triplets.; ; ; :
Furs = 32.2,P < 0.00005. Effect of CollFiyg 1rgersn = 45,800.6,P < %ion is that the large peaks in the neuronal data are consistent

0.00005. InteractionsE ;5 ;7gs76n= 2.200,P < 0.00005. with a stochastic process. o
The average number of significant peaks across stimuli in

intervals (diagonal) and relatively few repeating triplets with 8¢ neuronal data, as assessed by using the spike count-
short interval €2 ms) in both the neuronal and simulated dat&atched model, was indistinguishable from that expected by
sets. The large proportion of triplets with equal intervals fghance (31.2 of 625 at the = 0.05 significance level). In
expected. Given a single triplet with equal intervals, for exar§ontrast, with the NHPP model we would have concluded that
ple, 5 and 5 ms, only one additional spike with the sanfBany of the neuronal responses contained individual repeating
interval (continuing the example, 5 ms) forms a second triplEtPlet types that occurred more frequently than expected by
of the same type, that is, a repeating triplet. All other tripléthance.

types require at least two spikes at particular times before

forming a repeating triplet (see Fig. 1). The refractory peridd/l SCUSSION

_reduces the number of repeating spike patterns containiggmmary of results

intervals of <2 ms. For the same reasons, the number o

repeating quadruplets with equal intervals was larger than thatVe examined three forms of previously studied (Abeles
of the other quadruplet types, and the number of repeatif§91; Lestienne and Strehler 1987; Lestienne and Tuckwell
guadruplets with very short<(2 ms) intervals was small in 1998; Prut et al. 1998) precisely timed spike patterns in LGN
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15CM spike count-matched model to that seen in
CNHPP the neuronal data. Note the tight distribution
of this ratio of ~1.0 obtained with the spike
count-matched model compared with the flat-
ter distribution extending down to 0.0 from
the nonhomogenous Poisson process (NHPP)
model for both LGN and V1 data sets.
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and V1 neuronal responses, triplets and quadruplets that repedaes that the patterns we observed were consistent with a
within single neuronal responses and triplets that repeat acreghastic process.
different responses. We used static stimuli that evoked re-The large number of stimuli used and the large numbers of
sponses ranging from strongly inhibitory to strongly excitatoryrecisely timed triplets facilitated information theoretical anal-
Our results were found to apply across all response strengtysis of the number of precisely timed spike patterns. The
Given the large number of precisely timed spike patterns vemalysis showed that the information carried by the total num-
found, it is not surprising that we find that many§0%) of the ber of repeating precisely timed spike patterns was redundant
individual spikes are associated with precisely timed spiketh that carried by the spike count (Fig. 6). The redundancy of
patterns. information implies a relationship between the spike count and
Previous reports have emphasized only those spikes ocdbe distribution of the numbers and types of repeating patterns.
ring in patterns thought to have been above chance levels (e.g\We first compared our data with the predictions from three
Abeles 1991; Prut et al. 1998). Had we restricted our analysismmonly used models. As found in earlier studies of many
to using previous analysis methods we would also have cdirain areas (Abeles 1991; Abeles and Gerstein 1988; Dayhoff
cluded that a small number of spikes was associated with th@sel Gerstein 1983a,b; Lestienne and Strehler 1987; Lestienne
precisely timed spike patterns occurring above chance levelad Tuckwell 1998) these models predicted significantly fewer
However, we stress that the spike count-matched model indépeating patterns than were observed in our data (Fig. 8). Had
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matched model with other types of data, e.g., from rhythmic
neurons, bursting neurons, or neurons with a long refractory
period and low firing rates, has not yet been assessed. Thus
the relative importance of the ISI distribution in these situ-
ations remains unknown.

The spike count-matched model, which matches the spike
count distribution, the ISIs, and the time-varying firing rate,
predicts the distribution of each particular triplet type found in
the data (Figs. 8—13). This leads to the conclusion that the
observed numbers of repeating triplets in the neuronal data are
consistent with chance; this is very different from the conclu-
sion that would be reached with Poisson-based models.

Firing rate profile, response variance, and precisely timed
spike patterns

The number of precisely timed triplets and quadruplets in-
creases in a roughly combinatorial fashion with the spike count
(Abeles and Gerstein 1988). Figure 5 shows that high firing
rates are also associated with very large numbers of repeating
triplets. The difference between the number of repeating spike
patterns associated with high and low response strengths im-
plies that slow variations in firing rate (spike density function)
must be incorporated into models used to predict the expected
numbers of such patterns (Lestienne and Strehler 1987).

The nonlinear relationship between the number of spikes
within a response and the number of repeating triplets (Fig. 5)
also offers an intuitive explanation of the differences between
the NHPP and spike count-matched model in situations, as
here, where the response variance is numerically greater than
the response mean (in the following section we give the more

Fic. 10. Comparison of repeating triplet type. Frequency of occurrence of .
each of the 625 examined types of repeating triplet of the V1 neuronal data and NHPP Splke Count

the associated spike count-matched model d@itgm probability of each

repeating triplet type is shown as a gray scale for the neuronal data (lighter
higher probability) Bottom probability of each repeating type estimated from
the simulated spike trains from the spike count-matched model. Note the
decreasing probability of triplets with increasing intervals, the relatively high
probabilities for triplets with equal intervals (diagonals), and the relatively low

probability of triplets with very short<3 ms) intervals for both the neuronal

and modeled data. Modeled data appear smoother (less variable) than the
neuronal data because 20 times as many trials were simulated were present in

the neuronal data.

Matched

we relied on these models we might have postulated a special
role for the repeating patterns. Adjusting a previous model
(NHPP) by forcing the spike counts and ISls in the model to
match the experimental data (Figs. 2 and 3) demonstrates that
a stochastic process can give rise to the fine temporal structures
observed here (Figs. 8—13). Note that if the observed distribu-
tion of spike counts is truly Poisson, the spike count-matched

111 / s19|du) Bungeaday

and NHPP models are identical.

We observed that the mismatching of the ISI distribution
had a small but still significant effect on the predicted

numbers of precisely timed spike patternsl0% of the size

of mismatching the spike count distribution). Others hav,

uoneineQ piepuels

Fic. 11. Predicted mean and variance of repeating triplet types are higher
spike count-matched model than in NHPP model. Mean and variance of the

a!SO_Ob_Served a signifi_cant effect of changes in the Iglmber of each of the 625 examined repeating triplet types predicted by NHPP
distribution on the precise temporal structure of respons&si spike count-matched models in the responses of a single V1 cell to a single

(Berry and Meister 1998; Berry et al. 1997). A previoustimulus are showrTop left mean number of repeating triplets by triplet type

model that matches both the spike count distribution and t
time-varying firing rate but not the ISI distribution does no

r@dicted by NHPP modelop right mean number of repeating triplets by
Eiplet type predicted by spike count-matched modBsttom left SD of the

umber of repeating triplets by triplet type predicted by NHPP mdgigtom

match the fine temporal structures of V1 responses (Vict@ght: SD of the number of repeating triplets by triplet type predicted by spike
and Purpura 1996). The performance of the spike coumbunt-matched model.
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W SCM CINHPP [ POISSON ships or correlation within and between responses. At the
0 3000 ) temporal resolution we used (1 ms), responses can be described
4 Triplet 5,5 as binary events (spike or not) with a low probability of a spike
g 2000 occurring. If the small time bins within a response are inde-
‘<,f., 2000 pendent, the mean and variance of spike count over extended
I 1500 periods are s_lmply the_ sum of the means a_nd sum of variances
(@] of the short interval bins. As small time bins have a Poisson
E 1000 distribution of spike count, a response with independent bins
[T [ ; also has a Poisson distribution of spike count. Whenever the
% | hhhh N observed spike count distribution over homogenous repeated
2 0T Ty J trials deviates from a Poisson distribution there must be co-
012345678091011121314 variation between periods of a response because the individual
10000 Y OO N small bins cannot be independent. Thus, because the spike
» ] p A Ay 1 95% count-matched model used a different spike count distribution
ul 9000 1 A ’ i than that used in the NHPP model, the numbers of precisely
o 8000 1 . ‘ | , timed spike patterns must be different between these two
E 7000 - T ‘ i models.
0 5000 - Al ‘ AR L The dependency of the internal structures of responses ap-
g 5000 ; | i V plies to deviations from a Po_isson dis_tribution. It is insufficient
E 4000 - il i to show that _the_varlance is numenpally equal to the.mean
j because distributions that are not Poisson can have this prop-
S 3000 1 ‘ , | erty. The NHPP model, by definition, gives rise to simulated
:E, 2000 i i ' responses with numerically equal mean and variance of spike
o o ]ﬂ m PRIMARY VISUAL CORTEX

0123454678 91011121314

8
PREDICTED NUMBER OF ‘75

REPEATING TRIPLET .
G S Repeating 5
Fic. 12. Determination of significance for 1 repeating triplet type. The Triplets 4
method used to determine the distribution of expected numbers of 1 triplet type 3
(intervals 5;5 ms) for the responses of a single V1 neuron to 1 stimulus is ?

shown.Top Monte Carlo simulations of the spike count-matched (SCM) and
NHPP models produced a frequency histogram of the number of samples (of
10,000) in which the triplet type 5;5 was observed 0,1,2,,13,14 times.
Poisson distribution based on the mean from the NHPP model is also shown.
Bottom cumulative plot of the data in thep panel Value after the cumulative

plot crossed the 95% level (9,500 samples) was taken as the upperHirait (
0.05) for the expected number of repeating triplets of type 5;5 to occur by
chance (Poisson distribution 7; NHPP= 9; SCM = 11).

formal and general case). Changes in the number of simulated
trials with low spike counts will have little effect on the
expected number of precisely timed spike patterns because low
spike counts are associated with relatively few precisely timed
spike patterns. The nonlinearity means, however, that the pre-
dicted number of precisely timed patterns is underestimated
because high spike counts are associated with very large num-
bers of such patterns. Thus the expected number of precisely
timed spike patterns is very sensitive to the distribution of the
spike count.

Dependency of repeating patterns on spike count distribution

Here we show that, by necessity, the number of precisely
tlmﬁd tsp”ﬁ') p?t.telms.ll(s lecai"}(/\(/jepfndemtct)ﬁ the tdlsttlz[lr?ut“?nme. 13. Spike count-matched model predicts large variability in the num-
of the trial-by-trial spike count. We stress at the outset that BE: of particular repeating triplet types. Distributions of each repeating triplet
following argument applies no matter what the mean firingpe show that the spike count-matched model matches the neuronal data
rate; the dependency can be shown from consideration of thauding the occasional large numbers of particular triplet types. number
spike count distribution, not the spike counts per se. Furth@fiimes each triplet type, defined by the first and second intervals, was found

: : satrilg :im the responses of 1 striate cortical neuron to 1 stimBastom distributions
more, the argumgnt _‘?‘pp“es to spike count distributions wi f expected numbers of repeating triplets from 4 runs of the spike count-
small or |ar9? variability. . _ matched model. Model shows large variability in the numbers of particular
Precisely timed patterns of spikes reflect temporal relatiofepeating triplet types from run to run.
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count. We note that non-Poisson distributions of spike coudifferent neurons (Abeles and Gerstein 1988; Aertsen et al.
have been reported in responses of neurons in the retina, LANG9; Vaadia et al. 1995). The estimated cross-product prob-
V1, TE, and parietal and frontal lobes (Baddeley et al. 199@bility will therefore necessarily be influenced by covariation
Berry and Meister 1998; Berry et al. 1997; Bradley et al. 198Between the bins of the responses of the individual neurons.
Britten et al. 1997; Buracas et al. 1998; Gershon et al. 199Bhus it is critical to use the correct spike count distribution to
Lee et al. 1998; Levine and Troy 1986; Reich et al. 199predict the expected numbers of precisely timed spike patterns
Snowden et al. 1992; Tolhurst et al. 1983; Victor and Purpuagross neurons just as it is within single neuronal responses.
1996; Vogels et al. 1989). Indeed all the reports of which we

are aware show that the spike count distribution is different ) ) ) ) o

from a Poisson distribution, indicating that the NHPP modé&hformation processing and information transmission

will necessarily misestimate the expected numbers of preciselyy/e are concerned here only with the information content of

timed spike patterns for all these brain areas. the neuronal responses (information encoding), not the mech-
o anisms by which the information may be transferred (informa-
Precision of temporal codes tion transmission). Exquisite arrangements of synapses (Thom-

Reports on other systems, most notably the auditory systefi?§ @nd Deuchars 1994) and complex structures of feedforward
of the owl and bat and the motion system of the fly, hay¥'d féedback inputs (Carr and Konishi 1988, 1990) suggest
shown that the precise times of individual spikes are directfjat Precisely timed spikes, especially synchronous volleys of
related to the stimulus (de Ruyter van Steveninck and BialSRIKeS, could have enhanced effects on postsynaptic cells com-
1988; Ferragamo et al. 1998; Olsen and Suga 1991; Suga 1 ,Ed. with temporally disjoint spikes (Douglas et al. 1991
Sullivan and Konishi 1984; Takahashi and Konishi 1986; T420¢hin et al. 1991; Softky 1994; Softky and Koch 1993).
kahashi et al. 1989). We have examined the potential role/ofough it is possible that mechanisms exist that preferen-

precisely timed patterns of spikes in information coding df2lly utilize precisely timed patterns, we stress that such mech-
static stimuli, not the role of the precise times of individugfiSms can only provide an alterative for conveying the same

spikes to rapidly changing or moving stimuli (Buracas et anformation (at a lower rate, Fig. 6) as that available from the

1998; de Ruyter van Steveninck and Bialek 1988; Rieke et %P'ke count if, as in LGN and V1 neuronal responses reported
1996). ere, the fine temporal structure is a consequence of coarse
In the past it has been shown that there is information in tigmPoral measures.
coarse €£30-Hz bandwidth) temporal variation of a response
that is unavailable from the spike count alone (Eskandar et a
1992a,b; Heller et al. 1995; McClurkin et al. 1991a—c; Optican
and Richmond 1987; Richmond and Optican 1990; RichmondAlthough mechanisms may be identified that impose and
et al. 1987, 1990; Tovee et al. 1993). These new restlfis ( maintain exact relations among interspike intervals, it is critical
KHz bandwidth) do not affect those conclusions because of tteeidentify the simplest models consistent with observed data.
difference in the precision of the proposed codes. Although we that vein, we have reported here that a simple stochastic
do not know the temporal precision of mechanisms used riwodel predicts the numbers and types of repeating patterns in
decode the information contained within responses, that tber data without needing to invoke a specific mechanism to
precisely timed spike patterns are predictable from spike cowgdtablish the observed relationships among spike times. Previ-
and firing rate profile shows that information unrelated to spil@is studies have frequently assumed a Poisson distribution of
count cannot be contained by the precisely timed spike pattesmke count (Abeles and Gerstein 1988; Abeles et al. 1993;
we observed. Aertsen et al. 1989; Lestienne and Strehler 1987; Lestienne and
Tuckwell 1998; Prut et al. 1998; Riehle et al. 1997; Vaadia et
] ) ) o ) al. 1995). This study has shown that changing the spike count
Precisely timed spike patterns in single and multiple distribution (from Poisson to observed) affects the predicted
neuronal spike trains numbers and types and therefore the interpretation of precisely

We have considered the fine temporal structure of the féned patterns. We conclude that the exactly timed patterns
sponses of single neurons. Many reports of precisely tim&gen here are directly related to the coars&d-Hz band-
spike patterns have found that the numbers of precisely tim@fith) firing rate modulation and the spike count distribution.
repeating patterns of spikes found between the responses Bf SPike count-matched model requires only enough data to
different neurons also exceed the number predicted by NHF§sHimate the firing rate profile to determine the numbers and
based models (Abeles and Gerstein 1998; Abeles et al. 1984€s of precisely timed spikes expected by chance. Thus it
Aertsen et al. 1989; Riehle et al. 1997; Vaadia et al. 1995). TRetentially provides a straightforward method of testing, for
results presented here show that deviations of the spike coff@mPle, the consistency between precisely timed patterns
distribution from a strict Poisson distribution will necessarigenerated by a biophysical model and the distribution of pre-
introduce temporal correlation into the responses of the in&iSely timed patterns that can be inferred with the matched
vidual neurons. These temporal correlation structures will aptodel from a small number of experimental trials.
pear as covariation between the probabilities of spikes occur-
ring between different time bins. The expected numbers ofWe thank Dr. K. Pettigrew for statistical advice and Drs. P. Foldiak, M.

. . . . berg, P. Latham, M. Mishkin, N. Port, and R. Wurtz for comments on
precisely timed spikes between responses of different neur@is i ats of this manuscript.

are generally estimated by cross-multiplication of probabilitieSy, oram was supported by a Fogarty International Research Fellowship, M.
of a spike occurring in individual bins in the responses of th&iener was supported by an Intramural Research Training Fellowship, and R.

IONCLUSIONS
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